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Abstract In this paper we present new modified open Newton Cotes integrators
and we develop a new modified trigonometrically-fitted open Newton-Cotes method.
We study the connection between the new proposed schemes, the differential methods
and the symplectic integrators. although The research on multistep symplectic inte-
grators is very poor, although, much research has been done on one step symplectic
integrators and several of then have obtained based on symplectic geometry. In this
paper a new open modified numerical algorithm of Newton-Cotes type is produced.
We present the new obtained method as symplectic multilayer integrator. The new
obtained symplectic schemes are applied for the solution of the resonance problem of
the radial Schrödinger Equation. The results show the efficiency of the new proposed
algorithm.
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1 Introduction

The last decades an extended study on the numerical solution of Ordinary Differential
Equations (ODEs) with special properties (see [1–68] and references therein) has
been done. More recently the investigation of the development of numerical integra-
tion methods for ODEs that preserve qualitative properties of the analytic solution was
of great interest (see [69] and references therein).

The development of one step symplectic integrators (see [69]) was the subject
of great activity the last decades. On multistep symplectic integrators we refer on
Zhu et al. [70] and on Chiou and Wu [71] who obtained multistep symplectic inte-
grators by writing Open Newton-Cotes differential schemes as multilayer symplec-
tic structures. More recently Simos et al. (see [35–41]) have developed classical
closed Newton-Cotes of low and high order as multilayer symplectic integrators.
Van den Berghe and Van Van Daele [44] have developed exponentially-fitted open
Newton-Cotes differential methods and they expressed them as multilayer symplec-
tic structures. Simos [43] has developed a new modified exponentially-fitted closed
Newton-Cotes differential method which is much more efficient than the corre-
sponding closed or open Newton-Cotes differential methods and exponentially-fit-
ted Newton-Cotes differential methods. In the same paper Simos has proved that all
closed Newton-Cotes differential schemes can be written as multilayer symplectic
structures.

In the present paper

1. We will introduce the modified open Newton-Cotes type differential methods. We
note that closed forms of these methods are first introduced in [72].

2. We will develop the new modified trigonometrically-fitted open Newton-Cotes
method.

3. We will also express the new modified trigonometrically-fitted open Newton-Cotes
method as multilayer symplectic integrator and

4. Finally, we will apply the new modified trigonometrically-fitted open Newton-
Cotes method to the radial Schrödinger equation in order to examine the efficiency
of the new obtained method.

We note that since the new proposed methods are of explicit form, can very easily
be applied to non-linear differential equations as well as linear ones.

The paper is constructed as follows:

– The new modified open trigonometrically-fitted Newton-Cotes method is devel-
oped in Sect. 2.

– In Sect. 3 results about symplectic matrices and schemes are presented and we
present the conversion of the new modified open Newton-Cotes type differential
method into multilayer symplectic structure

– Numerical results are presented in Sect. 4.
– Finally, in Sect. 5 conclusions are given.
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2 The new modified open Newton-Cotes differential methods

Consider the differential scheme:

ϕn+2 − ϕn−2 = h
(

a0 υn−1 + a1 υn + a2 υn+1

)

+h2
(

b0 ϑn−1 + b1 ϑn + b2 ϑn+1

)
(1)

where υi = ϕ′
i , i = n − 1, n, n + 1 and ϑi = ϕ′′

i , i = n − 1, n, n + 1
It is important to be observed that the numerical scheme (1) only can be derived by

using an integral rule based on the Hermite interpolation polynomial with equidistant
nodes whereas the Newton-Cotes integral rules are obtained by using the Lagrange
interpolation polynomial with equidistant nodes whereas.

Requiring the above differential scheme to be accurate for the following set of func-
tions (we note that υi = ϕ′

i , i = n − 1, n, n + 1 and ϑi = ϕ′′
i , i = n − 1, n, n + 1):

{1, t, t2, cos(w t), sin(w t), x cos(w t), x sin(w t)} (2)

the following set of equations is obtained:

0 = w h[−h b2w cos (w h)− h b1w − cos (w h) h b0 w

− sin (w h) a2 + sin (w h) a0]
4 cos (w h) sin (w h) = w h [a2 cos (w h)+ a1 + cos (w h) a0

− sin (w h) h b2 w + sin (w h) h b0w]
4 = a2 + a1 + a0

4 h[2 (cos (w h))2 − 1] = −h[h b1 t w2 + h b2 w
2 t cos (w h)

+w2 h2 b2 cos (w h)− w2 h2 cos (w h) b0 + w h sin (w h) a2

+w h sin (w h) a0 − a2 cos (w h)+ 2 sin (w h) h b2 w − 2 sin (w h) h b0 w

− cos (w h) a0 − a1 + cos (w h) h b0w
2 t−sin (w h) a0w t+sin (w h) a2w t]

4 t sin (w h) cos (w h) = −h[sin (w h) h b2 w
2 t − sin (w h) h b0 w

2 t

−w h a2 cos (w h)+ w h cos (w h) a0 + w2 h2 sin (w h) b2

+w2 h2 sin (w h) b0 − cos (w h) a0 w t − 2 h b2 w cos (w h)

−a1 t w − 2 h b1w − sin (w h) a2 + sin (w h) a0

−2 cos (w h) h b0 w − a2w t cos (w h)]
4 = a2 + a1 + a0

0 = 2 a2 − 2 a0 + 2 b2 + 2 b1 + 2 b0 (3)

We note that the first, second, third and fourth equations are obtained requiring the
algorithm (1) to be accurate for cos(w t), sin(w t), x cos(w t), x sin(w t) while the
fifth and sixth equations are produced requiring the scheme (1) to be accurate for
t j , j = 0(1)2. The requirement for the accurate integration of functions (2), helps
the method to be accurate for all the problems with solution which has behavior of
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trigonometric functions. Based on the above requirements the following coefficients
are obtained:

a0 = −2 cos (v)+ 2 cos (3 v)+ v sin (3 v)+ v sin (v)+ 4 cos (v) v2

−2 v2 − v sin (2 v)+ 2 v sin (v)+ 2 cos (v) v2

a1 = 4 cos (v)− 4 cos (3 v)− 2 v sin (3 v)+ 6 v sin (v)− 8 v2 − 4 v sin (2 v)

−2 v2 − v sin (2 v)+ 2 v sin (v)+ 2 cos (v) v2

b0 = T0

−2 v3 − v2 sin (2 v)+ 2 v2 sin (v)+ 2 v3 cos (v)
b1 = 0, a2 = a0, b2 = −b0 (4)

where T0 = −v cos (3 v) − 3 v cos (v) + 4 v cos (2 v) + 4 v2 sin (v) + sin (3 v) +
sin (v)− 2 sin (2 v) and v = w h.

For small values of v the above formulae are subject to heavy cancellations. In this
case the following Taylor series expansions must be used.

a0 = −16

15
+ 856

1575
v2 − 391

7875
v4 + 35557

18191250
v6 − 3372917

85135050000
v8

+ 2529073

5959453500000
v10 − 2315387

552603870000000
v12

+ 661553441

266791622397300000000
v14− 12325988501

21343329791784000000000
v16+· · ·

a1 = 92

15
− 1712

1575
v2 + 782

7875
v4 − 35557

9095625
v6 + 3372917

42567525000
v8

− 2529073

2979726750000
v10 + 2315387

276301935000000
v12

− 661553441

133395811198650000000
v14+ 12325988501

10671664895892000000000
v16+· · ·

b0 = −28

15
+ 428

1575
v2 − 319

23625
v4 + 6421

18191250
v6 − 415351

85135050000
v8

+ 847607

17878360500000
v10 − 143261

552603870000000
v12

+ 693406873

266791622397300000000
v14+ 490004843

17462724375096000000000
v16+· · · (5)

The Local Truncation Error for the above differential method is given by:

L .T .E(h) = −107 h7

4725

(
y(7)n + 2w2 y(5)n + w4 y(3)n

)
(6)

The L .T .E . is obtained expanding the terms yn±i , j = 0, 1, 2, fn± j and gn± j , j =
0, 1 in (1) into Taylor series expansions and substituting the Taylor series expansions
of the coefficients of the method.

So, based on the above we, have the following theorem.
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Theorem 1 The method (1) with coefficients ai , bi , i = 0(1)2 mentioned in (4) and
(5) is a trigonometrically-fitted explicit method which is accurate for the set of func-
tions (2) and is of sixth algebraic order.

3 Comparative error analysis

We will study the following methods:

– The classical open Newton-Cotes differential method of order four which is indi-
cated as METH I

– The classical open Newton-Cotes differential method of order six which is indi-
cated as METH II

– The trigonometrically fitted fourth algebraic order open Newton-Cotes differential
method developed by Vanden Berghe and Van Daele [44] which is indicated as
METH III

– The trigonometrically fitted sixth algebraic order open Newton-Cotes differential
method developed by Vanden Berghe and Van Daele [44] which is indicated as
METH IV

– The classical method1 of the new sixth algebraic order modified open Newton-
Cotes family of differential algorithms presented in this paper which is indicated
as METH V

– The new trigonometrically fitted sixth algebraic order modified open New-
ton-Cotes differential method developed in this paper which is indicated as
METH VI

The error analysis is based on the following steps:

– The one-dimensional time independent Schrödinger equation is of the form

y′′(x) = f (x) y(x) (7)

– The function f (x) is written in the form (based on the paper of Ixaru and Rizea
[67]):

f (x) = g(x)+ G (8)

where g(x) = V (x) − Vc = g, where Vc is the constant approximation of the
potential and G = v2 = Vc − E .

– Our analysis is based also on the expression of the derivatives y(i)n , i = 2, 3, 4, . . . ,
which are terms of the local truncation error formulae, in terms of the equation (7).
The expressions are presented as polynomials of G.

– Finally, we substitute the expressions of the derivatives, produced in the previous
step, into the local truncation error formulae.

1 Classical method of the family is the method of the family with constant coefficients which has the same
algebraic order.
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Based on the procedure mentioned above and on the formulae:

y(2)n = (V(x)− Vc + G) y(x)

y(4)n =
(

d2

dx2 V(x)

)
y(x)+ 2

(
d

dx
V(x)

) (
d

dx
y(x)

)

+(V(x)− Vc + G)

(
d2

dx2 y(x)

)

y(6)n =
(

d4

dx4 V(x)

)
y(x)+ 4

(
d3

dx3 V(x)

) (
d

dx
y(x)

)

+3

(
d2

dx2 V(x)

) (
d2

dx2 y(x)

)

+4

(
d

dx
V(x)

)2

y(x)

+6 (V(x)− Vc + G)

(
d

dx
y(x)

) (
d

dx
V(x)

)

+4 (U(x)− Vc + G) y(x)

(
d2

dx2 V(x)

)

+(V(x)− Vc + G)2
(

d2

dx2 y(x)

)
. . .

we obtain the expressions mentioned below.
We consider two cases in terms of the value of E :

– The Energy is close to the potential, i.e. G = Vc − E ≈ 0. So only the free terms
of the polynomials in G are considered. Thus for these values of G, the methods
are of comparable accuracy. This is because the free terms of the polynomials in
G, are the same for the cases of the classical method and of the new developed
methods.

– G � 0 or G � 0. Then | G | is a large number.
So, we have the following asymptotic expansions of the equations produced from
the Local Truncation errors and based on the above procedure.

The classical open Newton-Cotes differential method of order four

LTEMETHI = 14 h5

45

d

dx
y (x) G2 + · · · (9)

The classical open Newton-Cotes differential method of order six

LTEMETHII = 41 h7

140

d

dx
y (x) G3 + · · · (10)
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Table 1 Comparative error
analysis for the methods
mentioned in Sect. 3

We note that CFAE is the
coefficient of the maximum
power of G in the asymptotic
expansion and order of G is the
order of G in the asymptotic
expansion of the local truncation
error

Method Algebraic order Order of G CFAE

METH I 4 2 − 14

45

METH II 6 3 − 41

140

METH III 4 1 − 14

45

METH IV 6 2 − 41

140

METH V 6 3 − 107

4725

METH VI 6 2 − 214

4725

The trigonometrically fitted fourth algebraic order open Newton-Cotes differential
method developed by Vanden Berghe and Van Daele [44]

LTEMETHIII = h5
[(

14

15

(
d

dx
g (x)

)
y (x)+ 14

45
g (x)

d

dx
y (x)

)
G + · · ·

]
(11)

The trigonometrically fitted sixth algebraic order open Newton-Cotes differential
method developed by Vanden Berghe and Van Daele [44]

LTEMETHIV = h7
[(

41

28

(
d

dx
g (x)

)
y (x)+ 41

140
g (x)

d

dx
y (x)

)
G2 + · · ·

]
(12)

The classical method2 of the new sixth algebraic order modified open Newton-Cotes
family of differential algorithms presented in this paper

LTEMETHV = h7
(

107

4725

d

dx
y (x) G3 + · · ·

)
(13)

The new trigonometrically fitted sixth algebraic order modified open Newton-Cotes
differential method developed in this paper

LTEMETHVI = h7
(

214

4725

(
d

dx
g (x)

)
y (x) G2 + · · ·

)
(14)

From the above equations and Table 1 we have the following theorem:

2 Classical method of the family is the method of the family with constant coefficients which has the same
algebraic order.
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Theorem 2
– For the classical well known open Newton-Cotes fourth algebraic order method

(METH I) the error increases as the second power of G
– For the classical well known open Newton-Cotes sixth algebraic order method

(METH II) the error increases as the third power of G
– For the trigonometrically fitted fourth algebraic order open Newton-Cotes differ-

ential method developed by Vanden Berghe and Van Daele [44] (METH III) the
error increases as the first power of G

– For the trigonometrically fitted sixth algebraic order open Newton-Cotes differen-
tial method developed by Vanden Berghe and Van Daele [44] (METH IV) the error
increases as the second power of G

– For the classical method3 of the new sixth algebraic order modified open Newton-
Cotes family of differential algorithms presented in this paper (METH V) the error
increases as the third power of G

– For the new trigonometrically fitted sixth algebraic order modified open Newton-
Cotes differential method developed in this paper the error increases as the second
power of G

So, for the numerical solution of the time independent radial Schrödinger equation the
new proposed method produced in this paper (Sect. 2—METH IV) is the most accurate
Method , especially for large values of | G |=| Vc − E |, since it is of a sixth algebraic
order method for which the error increases as the second power of G and has absolute
minimal coefficient of the maximum power (CFAE).

4 Symplectic schemes and numerical methods

4.1 Basic theory

Dividing an interval [a, b] with N points we have (see Zhu et. al. [70] and references
therein)

t0 = a, tn = x0 + n h, tN = x0 + N h = b, n = 1, 2, . . . , N , (15)

where t is the independent variable.
The above division leads to the following discrete scheme:(

ψn+1
φn+1

)
= Mn+1

(
ψn

φn

)
, Mn+1 =

(
pn+1 qn+1
rn+1 sn+1

)
(16)

where p, q, r, s ∈ �. Based on the above we can write the n-step approximation to
the solution as:(

ψn

φn

)
=

(
pn qn

rn sn

) (
pn−1 qn−1
rn−1 sn−1

)
· · ·

(
p1 q1
r1 s1

)(
ψ0
φ0

)

= Mn Mn−1 · · · M1

(
ψ0
φ0

)

3 Classical method of the family is the method of the family with constant coefficients which has the same
algebraic order.
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Defining

S = Mn Mn−1 · · · M1 =
(

Pn Qn

Rn Sn

)

the discrete transformation can be written as:
(
ψn

φn

)
= S

(
ψ0
φ0

)

Definition 1 A discrete scheme (16) is a symplectic scheme if the transformation
matrix S is symplectic.

Definition 2 A matrix S is symplectic if ST J S = J where

J =
(

0 1
−1 0

)

Remark 1 The product of symplectic matrices is also symplectic. Hence, if each matrix
Mn is symplectic the transformation matrix S is symplectic. Consequently, the discrete
scheme (2) is symplectic if each matrix Mn is symplectic.

The proposed methods can be used for non-linear differential equations as well as
linear ones.

Theorem 3 A discrete scheme of the form

(
b −a
a b

)(
φn+1
ψn+1

)
=

(
b a

−a b

) (
φn−1
ψn−1

)
(17)

is symplectic.

Proof We rewrite (17) as

(
φn+1
ψn+1

)
=

(
b −a
a b

)−1 (
b a

−a b

) (
φn−1
ψn−1

)

Define

M =
(

b −a
a b

)−1 (
b a

−a b

)
= 1

b2 + a2

(
b2 − a2 2ab
−2ab b2 − a2

)

and it can easily be verified that

MT J M = J

thus the matrix M is symplectic. �	
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Theorem 4 A discrete scheme of the form

(
k − w d

−d k − w

)(
φn+1
ψn+1

)
=

(
k + w −d

d k + w

)(
φn−1
ψn−1

)
(18)

is symplectic if w = 0 (for any k, d ∈ R and k 
= 0).

Proof We rewrite (18) as

(
φn+1
ψn+1

)
=

(
k − w d

−d k − w

)−1 (
k + w −d

d k + w

) (
φn−1
ψn−1

)

Define

M =
(

k − w d
−d k − w

)−1 (
k + w −d

d k + w

)

= 1

k2 − 2 k w + w2 + d2

(
k2 − w2 − d2 −2 k d

2 k d k2 − w2 − d2

)

and it can easily be verified that

MT J M =
(

0 T1
−T1 0

)

where T1 = k2+2 k w+w2+d2

k2−2 k w+w2+d2 .
It can be easily seen that in order the matrix M to be symplectic the following

relation must hold, for any k, d ∈ R:

T1 = k2 + 2 k w + w2 + d2

k2 − 2 k w + w2 + d2 = 1 ⇔ 4 k w = 0 ⇔ w = 0 (19)

for any k 
= 0. �	

4.2 The new modified open Newton-Cotes can be expressed
as symplectic integrators

In the literature it has proved the symplectic structure of the following second-order
differential scheme (SOD) [70],

yn+1 − yn−1 = 2h fn (20)

Based on the papers of Zhu et al. [70] and Chiou et al. [71] we will prove the
multilayer symplectic structure of the new proposed modified Open Newton-Cotes
differential schemes.

An application of the new Newton-Cotes differential formula (1) with the coeffi-
cients given by (4) to the linear Hamiltonian system
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φ̇ = s ψ

ψ̇ = −s φ (21)

(whereφ is the position,ψ is the monentum and s is a constant scalar or matrix) leads to:

φn+2 − φn−2 = s (a0 ψn−1 + a1 ψn + a2 ψn+1)

−s2 (b0 φn−1 + b1 φn + b2 φn+1)

ψn+2 − ψn−2 = −s (a0 φn−1 + a1 φn + a2 φn+1)

−s2 (b0 ψn−1 + b1 ψn + b2 ψn+1) (22)

where s = m h, where m is defined in (21).
From (20) we have that:

φn+1 − φn−1 = 2 s ψn (23)

ψn+1 − ψn−1 = −2 s φn (24)

φn+2 − φn−2 = 4 s ψn (25)

ψn+2 − ψn−2 = −4 s φn (26)

φn+ 1
2

− φn− 1
2

= s ψn (27)

ψn+ 1
2

− ψn− 1
2

= − s φn (28)

φn+ 3
2

− φn− 3
2

= 3 s ψn (29)

ψn+ 3
2

− ψn− 3
2

= − 3 s φn (30)

Considering the approximation based on the formulae (27) and (28) for the n + 1-
step and for the n-step gives:

φn+1 − φn = s ψn+ 1
2

(31)

φn − φn−1 = s ψn− 1
2

(32)

ψn+1 − ψn = − s φn+ 1
2

(33)

ψn − ψn−1 = − s φn− 1
2

(34)

(35)

From (31), (32) and (33), (34) we have:

φn+1 + φn−1 = 2φn + s
(
ψn+ 1

2
− ψn− 1

2

)
(36)

ψn+1 + ψn−1 = 2ψn − s
(
φn+ 1

2
− φn− 1

2

)
(37)

The formulae (36) and (37) can be written as (taking into account the formula (28)
and (27) respectively):

φn+1 + φn−1 = 2φn − s2 φn =
(

2 − s2
)
φn (38)
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ψn+1 + ψn−1 = 2ψn − s2 ψn =
(

2 − s2
)
ψn (39)

Considering, now, the approximation based on the formula (29) and (30) for the
n + 2-step and for the n + 1-step gives:

φn+2 − φn−1 = 3 s ψn+ 1
2

(40)

φn+1 − φn−2 = 3 s ψn− 1
2

(41)

ψn+2 − ψn−1 = − 3 s φn+ 1
2

(42)

ψn − ψn−1 = − 3 s φn− 1
2

(43)

(44)

From (40), (41) and (42), (43) we have:

φn+2 + φn−2 = φn+1 + φn−1 + 3 s
(
ψn+ 1

2
− ψn− 1

2

)
(45)

ψn+2 + ψn−2 = ψn+1 + ψn−1 − 3 s
(
φn+ 1

2
− φn− 1

2

)
(46)

The formulae (45) and (46) can be written as (taking into account the formula (38)
and (38) respectively and (28) and (27) respectively):

φn+2 + φn−2 =
(

2 − s2
)
φn − 3 s2 φn =

(
2 − 4 s2

)
φn (47)

ψn+1 + ψn−1 =
(

2 − s2
)
ψn − 3 s2 ψn =

(
2 − 4 s2

)
ψn (48)

From (22) using the relations a2 = a0 and b2 = −b0 we have:

φn+2 − φn−2 = s
[
a0 (ψn−1 + ψn+1)+ a1 ψn

]

− s2 [
b0 (φn−1 − φn+1)+ b1 φn

]

ψn+2 − ψn−2 = − s
[
a0 (φn−1 + φn+1)+ a1 φn

]

−s2 [
b0 (ψn−1 − ψn+1)+ b1 ψn

]
(49)

Using (38), (39) and (23), (24), the formula (49) gives:

φn+2 − φn−2 = s
[
a0

(
2 − s2

)
+ a1

]
ψn − s2 [b0 (2 s ψn)+ b1 φn]

ψn+2 − ψn−2 = − s
[
a0

(
2 − s2

)
+ a1

]
φn − s2 [b0 (−2 s φn)+ b1 ψn] (50)

The above formulae (50) lead to:

φn+2 − φn−2 =
[
s

[
a0

(
2 − s2

)
+ a1

]
+ 2 s3 b0

]
ψn − s2 b1 φn

ψn+2 − ψn−2 =
[
− s

[
a0

(
2 − s2

)
+ a1

]
− 2 s3 b0

]
φn − s2 b1 ψn (51)
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Solving (47) and (48) we found that:

φn = −1

2

φn+2 + φn−2

−1 + 2 s2

ψn = −1

2

ψn+2 + ψn−2

−1 + 2 s2 (52)

Substituting ψn and φn into (51) we obtain:

φn+2 − φn−2 =
[
s

[
a0

(
2 − s2

)
+ a1

]
+ 2 s3 b0

]
(

−1

2

ψn+2 + ψn−2

−1 + 2 s2

)
− s2 b1

(
−1

2

φn+2 + φn−2

−1 + 2 s2

)

ψn+2 − ψn−2 =
[
− s

[
a0

(
2 − s2

)
+ a1

]
− 2 s3 b0

]
(

−1

2

φn+2 + φn−2

−1 + 2 s2

)
− s2 b1

(
−1

2

ψn+2 + ψn−2

−1 + 2 s2

)
(53)

or equivalently:

(
1 − 1

2

s2b1

−1 + 2 s2

)
φn+2 + 1

2

(
s
(
a0

(
2 − s2

) + a1
) + 2 s3 b0

)
ψn+2

−1 + 2 s2

= −
(

−1 − 1

2

s2 b1

−1 + 2 s2

)
φn−2 − 1

2

(
s
(
a0

(
2 − s2

) + a1
) + 2 s3 b0

)
ψn−2

−1 + 2 s2

1

2

(−s
(
a0

(
2 − s2

) + a1
) − 2 s3 b0

)
φn+2

−1 + 2 s2 +
(

1 − 1

2

s2 b1

−1 + 2 s2

)
ψn+2

= −1

2

(−s
(
a0

(
2−s2

)+a1
)−2 s3 b0

)
φn−2

−1 + 2 s2 −
(
−1− 1

2

s2 b1

−1 + 2 s2

)
ψn−2

(54)

The above formula in matrix form can be written as:

⎛
⎝

1 − 1
2

s2b1
−1+2 s2 T0

− T0 1 − 1
2

s2b1
−1+2 s2

⎞
⎠

(
φn+2
ψn+2

)

=
⎛
⎝

1 + 1
2

s2b1
−1+2 s2 − T0

T0 1 + 1
2

s2b1
−1+2 s2

⎞
⎠

(
φn−2
ψn−2

)
(55)

where

T0 = 1

2

s
(
a0

(
2 − s2

) + a1
) + 2 s3 b0

−1 + 2 s2
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The equation (55) can be written as:

(
φn+2
ψn+2

)
= M

(
φn−2
ψn−2

)
(56)

where

M =
⎛
⎝

1 − 1
2

s2b1
−1+2 s2 T0

− T0 1 − 1
2

s2b1
−1+2 s2

⎞
⎠

−1 ⎛
⎝

1 + 1
2

s2b1
−1+2 s2 − T0

T0 1 + 1
2

s2b1
−1+2 s2

⎞
⎠ (57)

Based on Theorem 3, the discrete scheme (56) is symplectic and the matrix M is
symplectic, since b1 = 0 (see 4).

So, based on the above, we have the following theorem.

Theorem 5 An application of the new modified open Newton-Cotes differential for-
mula (1) with the coefficients given by (4) to the linear Hamiltonian system leads to
the discrete scheme (55) which is symplectic.

5 Numerical examples

In order to illustrate the efficiency of the new proposed method obtained in Sect. 2 we
apply it to the radial time independent Schrödinger equation.

In order to apply the new method to the one-dimensional Schrödinger equation the
value of parameterw is needed. For every problem of the radial Schrödinger equation
given by

y′′(x) = [l(l + 1)/x2 + V (x)− E]y(x). (58)

the parameter w is given by

w = √|q(x)| = √|V (x)− E | (59)

where V (x) is the potential and E is the energy.

5.1 Woods-Saxon potential

In our example the well known Woods-Saxon potential given by

V (x) = u0

1 + z
− u0z

a (1 + z)2
(60)

is used, with z = exp [(x − X0) /a] , u0 = −50, a = 0.6, and X0 = 7.0.
The behavior of Woods-Saxon potential is shown in the Fig. 1.
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Fig. 1 The Woods-Saxon potential

It is well known that for some potentials, such as the Woods-Saxon potential, the
definition of parameterw is not given as a function of x but it is based on some critical
points which have been defined from the investigation of the appropriate potential (see
for details [50]).

For the purpose of obtaining our numerical results it is appropriate to choose w as
follows (see for details [50]):

w =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√−50 + E, for x ∈ [0, 6.5 − 2h],√−37.5 + E, for x = 6.5 − h√−25 + E, for x = 6.5√−12.5 + E, for x = 6.5 + h√
E, for x ∈ [6.5 + 2h, 15]

(61)

5.2 Radial Schrödinger equation: the resonance problem

We consider the numerical solution of the one-dimensional time independent
Schrödinger equation (58) in the well-known case of the Woods-Saxon potential (60).
For the numerical solution of the above problem we need to approximate the true
(infinite) interval of integration by a finite interval. For the purpose of our numerical
example we take the domain of integration as x ∈ [0, 15]. We consider equation (58)
in a rather large domain of energies, i.e. E ∈ [1, 1000].

In the case of positive energies, E = k2, the potential dies away faster than the
term l(l+1)

x2 and the Schrödinger equation effectively reduces to

y′′(x)+
(

k2 − l(l + 1)

x2

)
y(x) = 0 (62)

for x greater than some value X .
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The above equation has linearly independent solutions kx jl(kx) and kxnl(kx)
where jl(kx) and nl(kx) are the spherical Bessel and Neumann functions respectively.
Thus the solution of Eq. (58) (when x → ∞ ) has the asymptotic form

y(x) � Akx jl(kx)− Bkxnl(kx)

� AC

[
sin

(
kx − lπ

2

)
+ tan δl cos

(
kx − lπ

2

)]
(63)

where δl is the phase shift, that is calculated from the formula

tan δl = y(x2)S(x1)− y(x1)S(x2)

y(x1)C(x1)− y(x2)C(x2)
(64)

for x1 and x2 distinct points in the asymptotic region (we choose x1 as the right hand
end point of the interval of integration and x2 = x1 − h) with S(x) = kx jl(kx) and
C(x) = −kxnl(kx). Since the problem is treated as an initial-value problem, we need
y0, yi , i = 1(1)9 before starting a four-step method. From the initial condition we
obtain y0. The other values can be obtained using the Runge-Kutta-Nyström meth-
ods of Dormand et al. (see [9]). With these starting values we evaluate at x1 of the
asymptotic region the phase shift δl .

For positive energies we have the so-called resonance problem. This problem con-
sists either of finding the phase-shift δl or finding those E , for E ∈ [1, 1000], at which
δl = π

2 . We actually solve the latter problem, known as the resonance problem when
the positive eigenenergies lie under the potential barrier.

The boundary conditions for this problem are:

y(0) = 0, y(x) = cos
(√

Ex
)

for large x . (65)

We compute the approximate positive eigenenergies of the Woods-Saxon resonance
problem using:

– The classical open Newton-Cotes differential method of order four which is indi-
cated as METH I

– The classical open Newton-Cotes differential method of order six which is indi-
cated as METH II

– The trigonometrically fitted fourth algebraic order open Newton-Cotes differential
method developed by Vanden Berghe and Van Daele [44] which is indicated as
METH III

– The trigonometrically fitted sixth algebraic order open Newton-Cotes differential
method developed by Vanden Berghe and Van Daele [44] which is indicated as
METH IV

– The classical method4 of the new sixth algebraic order modified open Newton-
Cotes family of differential algorithms presented in this paper which is indicated
as METH V

4 Classical method of the family is the method of the family with constant coefficients which has the same
algebraic order.
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Fig. 2 Accuracy (number of digits) for several values of NFE for the eigenvalue E1 = 53.58872. The
nonexistence of a value of accuracy indicates that for this value of NFE, accuracy is positive

– The new trigonometrically fitted sixth algebraic order modified open Newton-Cotes
differential method developed in this paper which is indicated as METH VI

The computed eigenenergies are compared with exact ones. In Figs. 2, 3, 4, 5 we
present the Accuracy (Number of Digits) of the eigenenergies Ei , i = 1(1)4, for
several values of NFE = Number of Function Evaluations.

6 Remarks–conclusions–summaries

6.1 Remarks and conclusions

The purpose of this paper was the introduction of a new modified open Newton
Cotes integrators and the development of a new modified open trigonometrically-fit-
ted Newton-Cotes method. We investigate the connection between the new proposed
schemes, the differential methods and the symplectic integrators.
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Fig. 3 Accuracy (number of digits) for several values of NFE for the eigenvalue E2 = 163.215341.
The nonexistence of a value of accuracy indicates that for this value of NFE, accuracy is positive

We have applied the new methods to the resonance problem of the one-dimensional
Schrödinger equation.

Based on the results presented above we have the following conclusions:

– The trigonometrically fitted fourth algebraic order open Newton-Cotes differen-
tial method developed by Vanden Berghe and Van Daele [44] (METH III)is more
efficient than the classical open Newton-Cotes differential method of order four
(METH I)

– The classical open Newton-Cotes differential method of order six (METH II) is
more efficient than the trigonometrically fitted fourth algebraic order open New-
ton-Cotes differential method developed by Vanden Berghe and Van Daele [44]
(METH III) and the classical open Newton-Cotes differential method of order four
(METH I)
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Fig. 4 Accuracy (number of digits) for several values of NFE for the eigenvalue E3 = 341.495874. The
nonexistence of a value of accuracy indicates that for this value of NFE, accuracy is positive

– The trigonometrically fitted sixth algebraic order open Newton-Cotes differential
method developed by Vanden Berghe and Van Daele [44] (METH IV) is more
efficient than the classical open Newton-Cotes differential method of order six
(METH II)

– The classical method5 of the new sixth algebraic order modified open Newton-
Cotes family of differential algorithms presented in this paper (METH V) is more
efficient than all the methods mentioned above.

– Finally, the new trigonometrically fitted sixth algebraic order modified open New-
ton-Cotes differential method developed in this paper (METH VI) is much more
efficient than all the other methods.

5 Classical method of the family is the method of the family with constant coefficients which has the same
algebraic order.
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Fig. 5 Accuracy (number of digits) for several values of NFE for the eigenvalue E4 = 989.701916.
The nonexistence of a value of accuracy indicates that for this value of NFE, accuracy is positive

6.2 Summaries on the properties of the numerical methods

From the analysis presented above (comparative error analysis and comparative stabil-
ity analysis) and from the numerical results presented above, the following summaries
on the importance of the properties of the numerical methods are excluded:

– The dependence of the Algebraic Order of a Numerical Method and the parameter
G = Vc − E (where Vc is the constant approximation of the potential). For the
same algebraic order it is important to have the minimal possible power of the
parameter G. This is because in this case we have the minimal Local Truncation
Error.

– The Symplectic property is an important property for the efficient solution of the
radial Schrödinger equation.
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All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).

Acknowledgment The author wishes to thank EMPEIRIKOS FOUNDATION for their support.

References

1. H. Van de Vyver, Phase-fitted and amplification-fitted two-step hybrid methods for y′′ = f (x, y). J.
Comput. Appl. Math. 209(1), 33–53 (2007)

2. H. Van de Vyver, An explicit Numerov-type method for second-order differential equations with
oscillating solutions. Comput. Math. Appl. 53, 1339–1348 (2007)

3. H. Van de Vyver, A trigonometrically fitted explicit hybrid method for the numerical integration of
orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)

4. C. Tang, W. Wang, H. Yan, Z. Chen, High-order predictorcorrector of exponential fitting for the
N-body problems. J. Comput. Phys. 214(2), 505–520 (2006)

5. L.G. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)
6. L.D. Landau, F.M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1965)
7. I. Prigogine, S. Rice (eds.), Advances in Chemical Physics Vol. 93: New Methods in Computational

Quantum Mechanics (Wiley, London, 1997)
8. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, Toronto, 1950)
9. J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge-Kutta-Nyström formulae. IMA J.

Numer. Anal. 7, 235–250 (1987)
10. J.R. Dormand, P.J. Prince, A family of embedded RungeKutta formulae. J. Comput. Appl. Math. 6, 19–

26 (1980)
11. T.E. Simos, J. Vigo-Aguiar, A modified phase-fitted Runge-Kutta method for the numerical solution

of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)
12. A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge-Kutta method with increased

phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math.
Chem. 47(1), 315–330 (2010)

13. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge-Ku-
tta-Nyström methods for the numerical solution of the Schrödinger equation and related problems a
method of 8th algebraic order. J. Math. Chem. 31(2), 211–232 (2002)

14. Z.A. Anastassi, T.E. Simos, Trigonometrically fitted Runge-Kutta methods for the numerical solution
of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

15. Z.A. Anastassi, T.E. Simos, A family of exponentially-fitted Runge-Kutta methods with exponential
order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–
100 (2007)

16. J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst.
Math. Appl. 18, 189–202 (1976)

17. G.D. Quinlan, S. Tremaine, Astron. J. 100(5), 1694–1700 (1990)
18. http://burtleburtle.net/bob/math/multistep.html
19. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid

explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the
basic method. J. Math. Chem. 29(4), 281–291 (2001)

20. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid
explicit methods for the numerical solution of the Schrödinger equation. Part. 2. Development of the
generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

21. T.E. Simos, J. Vigo-Aguiar, Symmetric eighth algebraic order methods with minimal phase-lag for the
numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

22. D.P. Sakas, T.E. Simos, A family of multiderivative methods for the numerical solution of the
Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

23. T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation.
J. Math. Chem. 46(3), 981–1007 (2009)

24. I. Alolyan, T.E. Simos, High algebraic order methods with vanished phase-lag and its first derivative
for the numerical solution of the Schrödinger equation. J. Math. Chem. 48(4), 925–958 (2010)

123

http://burtleburtle.net/bob/math/multistep.html


J Math Chem (2012) 50:782–804 803

25. I. Alolyan, T.E. Simos, Multistep methods with vanished phase-lag and its first and second derivatives
for the numerical integration of the Schrödinger equation. J. Math. Chem. 48(4), 1092–1143 (2010)

26. I. Alolyan, T.E. Simos, A family of eight-step methods with vanished phase-lag and its derivatives for
the numerical integration of the Schrd̈inger equation. J. Math. Chem. 49(3), 711–764 (2011)

27. A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation.
J. Math. Chem. 47(2), 871–890 (2010)

28. K. Tselios, T.E. Simos, Symplectic methods for the numerical solution of the radial Shrödinger equa-
tion. J. Math. Chem. 34(1–2), 83–94 (2003)

29. K. Tselios, T.E. Simos, Symplectic methods of fifth order for the numerical solution of the radial
Shrodinger equation. J. Math. Chem. 35(1), 55–63 (2004)

30. T. Monovasilis, T.E. Simos, New second-order exponentially and trigonometrically fitted symplec-
tic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math.
Chem. 42(3), 535–545 (2007)

31. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic methods for the numerical
integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

32. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrically fitted and exponentially fitted sym-
plectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3),
257–267 (2006)

33. Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the
Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

34. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae of high-order for long-time inte-
gration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

35. Z. Kalogiratou, T.E. Simos, Newton-Cotes formulae for long-time integration. J. Comput. Appl.
Math. 158(1), 75–82 (2003)

36. T.E. Simos, High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solu-
tion of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

37. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for the solution of the Schrödinger
equation. MATCH Commun. Math. Comput. Chem. 60(3), 787–801 (2008)

38. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical
integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

39. T.E. Simos, High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integra-
tion of orbital problems. Comput. Phys. Commun. 178(3), 199–207 (2008)

40. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for numerical integration of the
Schrödinger equation. Comput. Lett. 3(1), 45–57 (2007)

41. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital
problems. RevMexAA 42(2), 167–177 (2006)

42. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration. Int.
J. Mod. Phys. C 14(8), 1061–1074 (2003)

43. T.E. Simos, New closed Newton-Cotes type formulae as multilayer symplectic integrators. J. Chem.
Phys. 133(10):104108 (2010)

44. G. Vanden Berghe, M. Van Daele, Exponentially fitted open NewtonCotes differential methods as
multilayer symplectic integrators. J. Chem. Phys. 132, 204107 (2010)

45. Z. Kalogiratou, T. Monovasilis, T.E. Simos, A fifth-order symplectic trigonometrically fitted partitioned
Runge-Kutta method. In: International Conference on Numerical Analysis and Applied Mathematics,
SEP 16–20, 2007 Corfu, GREECE, Numerical Analysis and Applied Mathematics. AIP Conference
Proceedings, vol. 936, pp. 313–317 (2007)

46. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Families of third and fourth algebraic order trigonometri-
cally fitted symplectic methods for the numerical integration of Hamiltonian systems. Comput. Phys.
Commun. 177(10), 757–763 (2007)

47. T. Monovasilis, T.E. Simos, Symplectic methods for the numerical integration of the Schrödinger
equation. Comput. Mater. Sci. 38(3), 526–532 (2007)

48. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Computation of the eigenvalues of the Schrödinger equa-
tion by symplectic and trigonometrically fitted symplectic partitioned Runge-Kutta methods. Phys.
Lett. A 372(5), 569–573 (2008)

49. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Symplectic partitioned Runge-Kutta methods with minimal
phase-lag. Comput. Phys. Commun. 181(7), 1251–1254 (2010)

123



804 J Math Chem (2012) 50:782–804

50. L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation
in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

51. J. Vigo-Aguiar, T.E. Simos, Family of twelve steps exponential fitting symmetric multistep methods
for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

52. G. Avdelas, E. Kefalidis, T.E. Simos, New P-stable eighth algebraic order exponentially-fitted methods
for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

53. T.E. Simos, A family of trigonometrically-fitted symmetric methods for the efficient solution of the
Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

54. T.E. Simos, Exponentially-fitted multiderivative methods for the numerical solution of the Schrödinger
equation. J. Math. Chem. 36(1), 13–27 (2004)

55. T.E. Simos, A four-step exponentially fitted method for the numerical solution of the Schrödinger
equation. J. Math. Chem. 40(3), 305–318 (2006)

56. T.E. Simos, A family of four-step trigonometrically-fitted methods and its application to the Schro-
dinger equation. J. Math. Chem. 44(2), 447–466 (2009)

57. Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integra-
tion of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4),
1102–1129 (2009)

58. G. Psihoyios, T.E. Simos, Sixth algebraic order trigonometrically fitted predictor-corrector methods
for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

59. G. Psihoyios, T.E. Simos, The numerical solution of the radial Schrödinger equation via a trigono-
metrically fitted family of seventh algebraic order Predictor-Corrector methods. J. Math. Chem. 40(3),
269–293 (2006)

60. Z. Wang, P-stable linear symmetric multistep methods for periodic initial-value problems. Comput.
Phys. Commun. 171(3), 162–174 (2005)

61. T.E. Simos, A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical
solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)

62. Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration
of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–
1129 (2009)

63. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two optimized symmetric eight-step implicit methods
for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

64. Z.A. Anastassi, T.E. Simos, Numerical multistep methods for the efficient solution of quantum mechan-
ics and related problems. Phys. Rep. 482, 1–240 (2009)

65. R. Vujasin, M. Sencanski, J. Radic-Peric, M. Peric, A comparison of various variational approaches
for solving the one-dimensional vibrational Schrödinger equation. MATCH Commun. Math. Comput.
Chem. 63(2), 363–378 (2010)

66. T.E. Simos, P.S. Williams, On finite difference methods for the solution of the Schrödinger equa-
tion. Comput. Chem. 23, 513–554 (1999)

67. L.G. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the
Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

68. J. Vigo-Aguiar, T.E. Simos, Review of multistep methods for the numerical solution of the radial
Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)

69. J.M. Sanz-Serna, M.P. Calvo, Numerical Hamiltonian Problem (Chapman & Hall, London, 1994)
70. W. Zhu, X. Zhao, Y. Tang, Numerical methods with a high order of accuracy in the quantum system.

J. Chem. Phys. 104, 2275–2286 (1996)
71. J.C. Chiou, S.D. Wu, Open Newton-Cotes differential methods as multilayer symplectic integrators.

J. Chem. Phys. 107, 6894–6897 (1997)
72. N. Ujevic’, R.J. Roberts, A corrected quadrature formula and applications. ANZIAM J. 45(E),

E41–E56 (2004)

123


	New open modified trigonometrically-fitted Newton-Cotes type multilayer symplectic integrators for the numerical solution of the Schrödinger equation
	Abstract
	1 Introduction
	2 The new modified open Newton-Cotes differential methods
	3 Comparative error analysis
	4 Symplectic schemes and numerical methods
	4.1 Basic theory
	4.2 The new modified open Newton-Cotes can be expressed as symplectic integrators

	5 Numerical examples
	5.1 Woods-Saxon potential
	5.2 Radial Schrödinger equation: the resonance problem

	6 Remarks--conclusions--summaries
	6.1 Remarks and conclusions
	6.2 Summaries on the properties of the numerical methods

	Acknowledgment
	References


